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RIGIDITY FOR METRICS WITH THE SAME LENGTHS OF
GEODESICS

Plamen Stefanov and Gunther Uhlmann

Abstract. We prove that we can recover a Riemannian metric in a bounded
smooth domain in R

3 up to an isometry which is the identity on the boundary,
by knowing the lengths of the geodesics joining points on the boundary. We
assume that the metrics are close to the euclidian metric e.

1. Introduction and statement of the results

Let Ω ⊂ R
3 be a bounded domain with smooth boundary Γ = ∂Ω. Let

g(x) = (gij(x)) be a Riemannian metric in Ω. Assume that Ω̄ is strictly convex
with respect to g, i.e., for any two distinct points x ∈ Ω̄, y ∈ Ω̄ there is a unique
geodesic joining x and y lying entirely in Ω with possible exception the endpoints
x and y. Let dg(x, y) denote the geodesic distance between x and y. The inverse
problem we address in this paper is whether we can determine the Riemannian
metric g knowing dg(x, y) for any x ∈ Γ, y ∈ Γ. It is easy to see that g cannot be
determined from this information. We have dψ∗g = dg for any diffeomorphism
ψ : Ω̄ → Ω̄ that leaves the boundary pointwise fixed, i.e., ψ|Γ = Id, where Id
denotes the identity map and ψ∗g is the pull-back of the metric g. R. Michel
conjectured in [M1] that this is the only obstruction to uniqueness, namely if
we have two Riemannian metrics g1, g2 with Ω̄ strictly convex with respect to
both, and if

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ Γ2,(1.1)

then there exists a diffeomorphism ψ : Ω̄ → Ω̄, ψ|Γ = Id, so that

g2 = ψ∗g1.(1.2)

The function dg measures the sojourn (travel) times of geodesics joining points
of the boundary. In the case that both g1 and g2 are conformal to the euclidian
metric e (i.e., (gk)ij = αkδij , k = 1, 2 with δij the Krönecker symbol), then the
problem we are considering here is known in seismology as the inverse kinematic
problem. In this case, it has been proven (see [B], [C], [Mu], [Mu-R]) under
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further restrictions on the metrics that if dg1 = dg2 , then g1 = g2. In this case
the diffeomorphism ψ as in (1.2) must be the identity.

The conjecture (1.2) has been considered in [C], [Gr], [M1], [O] for general
Riemannian manifolds with boundary under some assumptions on the curvature.
In [G-N] it discusses the two dimensional case in euclidian space. The linearized
problem has been extensively studied in [Sh]. In this paper we prove the con-
jecture (1.2) under the condition that the metrics are close in an appropriate
sense to the euclidian metric. More precisely, denote by Ck

(0)(Ω) the set of all
f ∈ Ck(Ω̄) such that ∂αf = 0 on ∂Ω for |α| ≤ k. Then we have

Theorem 1.1. Suppose that g1 and g2 are two metrics satisfying (1.1). Then
there exists ε > 0, such that if

gm − e ∈ C12
(0)(Ω), ‖gm − e‖C12(Ω̄) < ε, m = 1, 2,(1.3)

then there exists a C11 diffeomorphism ψ : Ω̄ → Ω̄ such that ψ|Γ = Id and
ψ∗g1 = g2.

We also remark that there are two closely related inverse problems. Suppose
we have a Riemannian metric which is the euclidian metric outside a compact
set. The inverse scattering problem for metrics is to determine the Riemannian
metric by measuring the scattering operator (see [G]). A similar obstruction
to (1.2) occurs in this case with ψ equal to the identity outside a compact set.
It was proven in [G] that knowing the scattering operator one can determine,
under some non-trapping assumptions on the metric, dg on the boundary of a
large ball.

One can consider also the hyperbolic Dirichlet-to-Neumann map Λg associated
to the wave equation (∂2

t − ∆g)u = 0 with g a Riemannian metric on Ω̄, with
Ω being a bounded domain with smooth boundary and ∆g being the Laplace-
Beltrami operator (see [Sy-U]). It was proven in [Sy-U] under the assumption
of no caustics in Ω̄ for g, that knowing Λg, one can recover dg.

Our proof of Theorem 1.1 relies on deriving an identity (see (2.10)) for the
difference of the metrics and working in suitable chosen coordinates. The lin-
earized version of the identity at the euclidian metric gives, roughly speaking,
that the integrals along the geodesics (lines in the linear case) of the difference
of the two metrics is zero (see (2.12) and (2.14)). Then one concludes that the
metrics are the same in those coordinates by inverting the X-ray transform. This
is done in section 2.

In section 3 we carry out the proof of Theorem 1.1 by using a perturbation
argument that leads to the inversion of a Fourier integral operator.

We remark that we assume in Theorem 1.1 that the metrics coincide to order
12 with the euclidian metric at the boundary. We only need to assume that
in some coordinates. In [M1] Michel proved that the assumption (1.1) implies
that the derivatives of the metrics up to order 2 coincide at the boundary in
suitable coordinates. In the two dimensional case it is proven in [M2] that (1.1)
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implies that all derivatives of the two metrics coincide at the boundary in suitable
coordinates.

The main result of this paper can be easily extended to dimension n > 3. It
is likely that the methods of this paper will give stability results as well as local
results near other Riemannian metrics than the euclidian metric. For other type
of local results see [C-D-S].

2. Preliminaries. The main identity

Assume that we have two metrics g1 and g2 satisfying

g − e ∈ Ck
(0)(Ω), ‖g − e‖Ck(Ω̄) < ε,(2.1)

with some k ≥ 2 and ε > 0. Assume also that they satisfy (1.1). By (2.1), g1

and g2 can be extended outside Ω as e and the so extended metrics belong to
Ck(R3). From now on we will denote by g1 and g2 the extended metrics.

The Hamiltonian related to g, where g is either g1 or g2, is

H =
1
2
( 3∑

i,j=1

gij(x)ξiξj − 1
)
.

Given x(0) ∈ Γ, ξ(0) ∈ S2, such that ν(x(0)) · g−1ξ(0) < 0, denote by xgj
, ξgj

,
j = 1, 2 the solution to the Hamiltonian system

d

ds
xm =

3∑
j=1

gmjξj ,
d

ds
ξm = −1

2

3∑
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=0 = x(0), ξ|s=0 = ξ(0).

(2.2)

Here g is either g1 or g2, while the initial conditions are the same for both
metrics. We remark that if ξ(0) · g−1ξ(0) = 1, then s is the arc-length in (2.2).
The assumption (1.1) implies the following property.

Lemma 2.1 (see [M1]). Let g1, g2 be two Riemannian metrics in Ω̄ with Ω̄
strictly convex with respect to anyone of them and assume g1|Γ = g2|Γ. Assume
also (1.1). Let xgm , ξgm , m = 1, 2, be the solution of (2.2) with the same initial
conditions

xg1(0) = xg2(0) = x(0), ξg1(0) = ξg2(0) = ξ(0).

Then

xg1(t) = xg2(t) ∈ Γ, ξg1(t) = ξg2(t),(2.3)

where t is the common length of the corresponding geodesics joining x(0) and
xg1(t) = xg2(t) provided that ξ(0) · g−1ξ(0) = 1.
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Proof. Let xg1 be the geodesics related to g1 defined above. Denote by s �→ yg2(s)
the geodesics associated to g2 joining xg1(0) and xg1(t) ∈ Γ, where t is the length
of xg1xg2 . In other words, yg2(0) = xg1(0), yg2(t) = xg1(t). Note, that t is also
the length of that geodesic. By [M1, Corollary 2.3], the geodesics xg1 and yg2 are
tangent at the common endpoints. Since yg2 solves (2.2) with g = g2 and initial
data yg2 = x(0), ξ(0) = η(0) with some η(0), we get that η(0) = ξ(0), because the
two metrics coincide on the boundary. Therefore, yg2 solves (2.2) with g = g2

and by the uniqueness of that solution we get that yg2 = xg2 . This proves the
lemma.

Consider the Hamiltonian system (2.2) with the following initial conditions

d

ds
xm =

3∑
j=1

gmjξj ,
d

ds
ξm = −1

2

3∑
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=−ρ = (−ρ, z), ξ|s=−ρ = (1, 0, 0).

(2.4)

Here z ∈ R
2, ρ > 0 is such that g = e for |x| > ρ and the solution x = x(s, z),

ξ = ξ(s, z) depends on the parameter z. If g = e, then x = (s, z) = (s, z1, z2).
As in [S-U2], from estimate (2.1) we get.

Lemma 2.2. Let g satisfy (2.1). For the solution x = x(s, z), ξ = ξ(s, z) of
(2.4) we have

‖x − (s, z)‖Ck−1 + ‖ξ − (1, 0, 0)‖Ck−1 ≤ Cε,

with C > 0 uniform in any compact set.

Introduce new coordinates y = (s, z). Then the map Ω � x �→ y is close to Id
in the Ck−1 topology for small ε > 0 and therefore is a diffeomorphism. In the
new coordinates g−1 = (gij) will have the form

(gij) =


 1 0 0

0 g22 g23

0 g23 g33


 .(2.5)

Notice that g would have a similar form, too.
Denote by ψ1, ψ2 the maps x �→ y related to g1, g2, respectively. Instead of

g1, g2, consider g̃1 = ψ∗
1g1 and g̃2 = ψ∗

2g2, respectively. It is easy to see that
s is the length parameter in (2.4) and therefore (1.1) implies ψ1(Γ) = ψ2(Γ).
So, both ψ1 and ψ2 map Ω to a new domain Ω̃. By (2.3), ψ1 = ψ2 outside Ω.
Therefore, (1.1) remains true for g̃1, g̃2 in Ω̃ and instead of (2.1) we have

g̃1 − g̃2 ∈ Ck−2
(0) (Ω̃), ‖g̃m − e‖Ck−2(Ω̄) < Cε, m = 1, 2,(2.6)

with some C > 0. We aim to prove that g̃1 = g̃2. This would prove the main
theorem, because it would imply ψ∗g1 = g2 where ψ := ψ−1

2 ψ1 would be a
diffeomorphism in Ω fixing the boundary. For the sake of simplicity of notation,
let us denote the new metrics again by g1, g2 and Ω̃ by Ω.
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Denote the solution of (2.2) by x = x(s, x(0), ξ(0)), ξ = ξ(s, x(0), ξ(0)). Let us
introduce new notation

X := (x, ξ).

The solution to (2.2) related to g1 and g2, respectively, can therefore be written
down as Xgj = Xgj (s, X

(0)) = Xgj (s, x
(0), ξ(0)).

Set F (s) := Xg2(t − s, Xg1(s, X
(0))). Here t = t(X(0)) is the length of the

geodesics issued from X(0) with endpoint on Γ and t is independent of g = g1 or
g = g2. Notice that the x-component of F (s) may not be in Ω but belongs to a
neighborhood of Γ small with ε. By (2.3), F (0) = Xg2(t, X

(0)) = Xg1(t, X
(0)) =

F (t). Thus

∫ t

0

F ′(s) ds = 0.(2.7)

Denote Vgj := (∂Hgj /∂ξ,−∂Hgj /∂x), j = 1, 2. Then

F ′(s) = − Vg2(Xg2(t − s, Xg1(s, X
(0))))

+
∂Xg2

∂X(0)
(t − s, Xg1(s, X

(0)))Vg1(Xg1(s, X
(0))).

(2.8)

We claim that

Vg2(Xg2(t − s, Xg1(s,X
(0)))) =

∂Xg2

∂X(0)
(t − s, Xg1(s, X

(0)))Vg2(Xg1(s, X
(0))).

(2.9)

Indeed, (2.9) follows from

0 =
d

ds

∣∣∣∣
s=0

X(T − s, X(s, X(0)))

= − V (X(T, X(0))) +
∂X

∂X(0)
(T, X(0))V (X(0)), ∀T,

after setting T = t−s. Therefore, (2.7), (2.8) and (2.9) combined together imply

∫ t

0

∂Xg2

∂X(0)
(t − s, Xg1(s, X

(0))) (Vg1 − Vg2) (Xg1(s, X
(0))) ds = 0.(2.10)

Relation (2.10) is our basic equality from which we will derive g1 = g2. If we
assume in (2.2) that the initial condition is given at t = t0, then (2.10) remains
true with the integral taken over (t0, t1), where t1 − t0 is the length of the
corresponding geodesic.

To make our approach more clear, we will consider a formal linearization of
(2.10). In other words, we will formally replace Xg1 and Xg2 by Xe, where e is
the euclidian metric, but we will keep Vg1 and Vg2 .
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Suppose g = e. Then Xe = (xe, ξe) solves x′
e = ξe, ξ′e = 0, therefore Ve =

(ξ, 0). It is easy to see that in this case

Xe =
(

1 s
0 1

)
X(0),

∂Xe

∂X(0)
=

(
1 s
0 1

)
.(2.11)

Since V = (g−1ξ,− 1
2∇x(g−1ξ) ·ξ) (recall that g−1 = {gij}), we get the following

formal linearization formula for (2.10)∫ t

0

(
mξ − 1

2
(t − s)∇x(mξ) · ξ, −1

2
∇x(mξ) · ξ

)
(x(0) + sξ) ds = 0,(2.12)

where {mij} := {gij
1 } − {gij

2 }, x(0) ∈ Γ, ξ = ξ(0) ∈ S2 and ξ(0) · ν(x(0)) < 0. By
(2.5), m has the form

m =


 0 0 0

0 m22 m23

0 m23 m33


 .(2.13)

Equating the second components of both sides in (2.12), we get

∫ t

0

3∑
i,j=2

∇xmij(x(0) + sξ)ξiξj ds = 0,(2.14)

for x(0) and ξ as above. This equation easily implies

3∑
i,j=2

ηm̂ij(η)ξiξj = 0 for ξ · η = 0,(2.15)

where m̂(η) is the Fourier transform of m(x) extended as 0 outside Ω. Let
p = (0, p2, p3) ∈ S2 be a parameter. Picking

ξ = ξp(η) =
η × p

|η × p| =
(p3η2 − p2η3,−p3η1, p2η1)√

η2
1 + (p3η2 − p2η3)2

,(2.16)

we get

η
p2
2η

2
1m̂33(η) + p2

3η
2
1m̂22(η) − 2p2p3η

2
1m̂23(η)

η2
1 + (p3η2 − p2η3)2

= 0.(2.17)

Choosing p = (0, 1, 0) yields

η
η2
1

η2
1 + η2

3

m̂33(η) = 0,(2.18)

therefore m33 = 0. Next, setting p = (0, 0, 1) in (2.17) leads to

η
η2
1

η2
1 + η2

2

m̂22(η) = 0,(2.19)
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so m22 = 0. And finally, choosing p = (0, 1, 1)/
√

2, we obtain

η
η2
1m̂33(η) + η2

1m̂22(η) − 2η2
1m̂23(η)

η2
1 + (η3 − η2)2/2

= 0,(2.20)

thus m23 = 0.

3. Proof of the main result

In this section we prove Theorem 1.1.
Let ρ > 0 be such that Ω̄ ⊂ Bρ := {x; |x| < ρ} and assume that g1 and g2 are

the transformed metrics of the form (2.5) satisfying (2.6), (1.1). Let us extend
g1 and g2 Ck−2-smoothly in Bρ \ Ω such that for the so extended gj we have
g1 = g2 in Bρ \Ω, gj − e ∈ Ck−2

(0) (Bρ), j = 1, 2 and g1, g2 satisfy (2.6), (1.1) with
Ω replaced by Bρ. We can also assume that the first row and the first column
of those metrics remain unchanged, so the extended metrics remain of the form
(2.5). In other words, we reduce the problem to two new metrics g1 and g2 in
Bρ which satisfy conditions similar to those satisfied by the original g1, g2 in Ω
but have special form. Notice that Bρ is strictly convex with respect to g1, g2

and for ε > 0 small enough there is a unique geodesics (with respect to either
metric) joining any two points in Bρ. We can further extend those two metrics
as e outside Bρ. Notice that after those extensions m = g−1

1 − g−1
2 extends as

zero outside Ω. Instead of solving (2.2), we will solve the same Hamiltonian
system for g = g1 with modified initial conditions. Assume now that

z ∈ {x; x · ξ(0) = 0}, ξ(0) ∈ S2,(3.1)

and solve

d

ds
xm =

3∑
j=1

gmjξj ,
d

ds
ξm = −1

2

3∑
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=−ρ = x(0) := z − ρξ(0), ξ|s=−ρ = ξ(0) ∈ S2, x(0) · ξ(0) = −ρ,

(3.2)

where g is either g1 or g2. We will denote the solution of (3.2) by x = xg(s, z, ξ(0)),
ξ = ξg(s, z, ξ(0)). If g = e, then xe = z +sξ(0), ξe = ξ(0). For general g satisfying
(2.6),

xg = z + sξ(0) + O(ε), ξ = ξ(0) + O(ε) in Ck−3.(3.3)

Here the Ck−3 norm is meant with respect to all variables s, z, ξ(0). Here and in
what follows O(ε) will denote various functions with norm bounded by Cε with
a constant C > 0 uniform in any fixed compact set. Estimate (3.3) follows from
Lemma 2.2 for ξ(0) fixed parameter and it is easy to see that it holds also for
ξ(0) considered as a variable.

Clearly, for any ξ(0) ∈ S2, (s, z) are Euclidean coordinates in R
3. The map

xe = z + sξ(0) �→ x = xg(s, z, ξ(0)) ∈ Bρ(3.4)
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is a diffeomorphism for ε > 0 small enough, because it is close to Id in the Ck−3

topology. Denote the Jacobian of this change of variables (related to g = g1) by
J1(x, ξ(0)).

With this choice of Xg1 , Xg2 , consider (2.10) with X(0) = (x(0), ξ(0)) = (z −
ρξ(0), ξ(0)). By (3.3), ∥∥∥∥Xg2 −

(
1 s
0 1

)
X(0)

∥∥∥∥
Ck−3

= O(ε),(3.5)

therefore, ∥∥∥∥ ∂Xg2

∂X(0)
−

(
1 s
0 1

)∥∥∥∥
Ck−4

= O(ε).(3.6)

We thus get that in (2.10) we have

∂Xg2

∂X(0)

(
t − s, Xg1(s, X

(0))
)

=
(

1 t − s
0 1

)
+ O(ε) in Ck−4,

with respect to the variables s and X(0). Here t is such that t+ρ is the length of
the geodesics issued from X(0) = (x(0), ξ(0)) (with x(0) ·ξ(0) = −ρ) with endpoint
X(1) such that x(1) ∈ Bρ and the geodesics X(0)X(1) crosses Bρ. So, (2.10) can
be rewritten as∫ t

−ρ

((
1 t − s
0 1

)
+ B(s)

)
(Vg1 − Vg2)(Xg1(s, X

(0))) ds = 0,(3.7)

where

B(s) = B(s, X(0); g1, g2) =
(

B11 B12

B21 B22

)
= O(ε) in Ck−4.

Each block Bij here is a 3×3 matrix. Recall that Vg1−Vg2 = (mξ,− 1
2∇x(mξ)·ξ).

The left-hand side of (3.7) is a 6-dimensional vector. Let us use the fact that its
last 3 components vanish:∫ (

∂m

∂xj
ξ · ξ − 2(B21mξ)j +

3∑
i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
ds = 0, j = 1, 2, 3.(3.8)

Here we used the fact that suppm ⊂ Bρ and therefore we can integrate with
respect to s over the whole real line.

Let us Fourier transform (3.8) with respect to z ∈ {z · ξ(0) = 0}. Then the
dual variable will belong to the same plane∫

z·ξ(0)=0

∫
e−iη·z

(
∂m

∂xj
ξ · ξ − 2(B21mξ)j

+
3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
ds dSz = 0, η · ξ(0) = 0,

(3.9)
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j = 1, 2, 3. Recall that here ξ(0) ∈ S2 is a parameter and m = m(x), x =
xg1(s, z, ξ(0)), ξ = ξg1(s, z, ξ(0)). In the integral above we can replace the phase
function η · z by η ·xe = η · (z + sξ(0)). Let us make the change of variables (3.4)
in (3.9) ∫

e−iη·xe

(
∂m

∂xj
ξ · ξ − 2(B21mξ)j

+
3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
J−1

1 dx = 0, η · ξ(0) = 0,

(3.10)

j = 1, 2, 3. Here m = m(x), ξ = ξ(x, ξ(0)) and xe = xe(x, ξ(0)) is the function
inverse to (3.4) with g = g1.

Let p = (0, p2, p3) ∈ S2 be a parameter as in (2.16). Choose ξ(0) = ξp(η) as
in (2.16) and let us plug this into (3.10). Clearly, ξ(0) · η = 0 and |ξ(0)| = 1.
Next, ξ(0) is singular on the line η = sp, s ∈ R. To avoid this singularity, choose
a cut-off function χp(η) ∈ C∞(R3 \ {0}), that vanishes for η near that line, i.e.

χp(η) =
{

0, if 1 − |p · η|/|η| < δ/2,
1, if 1 − |p · η|/|η| > δ.(3.11)

Here δ > 0 is a small parameter and we assume also that χp is homogeneous of
order 0. After multiplying (3.10) by χp(η) we obtain

χp(η)
∫

e−iϕp(x,η)

(
∂m

∂xj
ξ · ξ − 2(B21mξ)j

+
3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
J−1

1 dx = 0, ∀η �= 0,

(3.12)

j = 1, 2, 3. Here m = m(x), ξ = ξ(x, ξp(η)), ϕp(x, η) = η · xe(x, ξp(η)) and ξ, ϕp

depend smoothly on η ∈ suppχp \ {0}. Moreover, by (3.3), (3.4), for such η and
x in a compact set,

ϕp(x, η) = x · η + O(ε) in S1
k−3, ξ = ξp(η) + O(ε) in S0

k−3.(3.13)

Here and in what follows we denote by Sm
k the following class of functions. We

say that a = a(x, y, ξ) ∈ Ck(B2
ρ × R

3 \ {0}) belongs to Sm
k iff there exists a

constant C ≥ 0, such that∣∣∣∣∂α
x ∂β

y ∂γ
ξ a(x, y, ξ)

∣∣∣∣ ≤ C|ξ|m−|γ|

for (x, y) ∈ B2
ρ , ξ ∈ R

3 \ {0}, |α| + |β| + |γ| ≤ k.

(3.14)

The optimal constant in (3.14) defines a norm in Sm
k . We say that a = O(ε) in

Sm
k iff a ∈ Sm

k and the Sm
k -norm of a is O(ε), in other words (3.14) holds with

C replaced by Cε. We are going to use later [S-U1, Theorem A.1] and [S-U2,
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Proposition 4.1] about boundedness of FIOs and ΨDOs with amplitudes and
phase function of finite smoothness belonging to the class introduced above.

Recall that ξ(x, ξp(η)) is defined by ξ(x, ξp(η)) = ξg1(s, z, ξp(η)), where z =
z(x), s = s(x) are determined by x = xg1(s, z, ξ(0)) (see (3.4)). Assume that
ξ(0) = ±e1. It is easy to see then that xg1(s, z,±e1) = z ± se1, ξg1(s, z,±e1) =
±e1. Since η1 = 0 implies ξp(η) = ±e1, for η1 = 0 the remainder in (3.13)
therefore vanishes and we actually have

ξ = ξp(η)+
η1

|η|O(ε) =
η1√

η2
1 + (p3η2 − p2η3)2

[(
p3η2 − p2η3

η1
,−p3, p2

)
+ O1(ε)

]
,

where O(ε) and O1(ε) are in S0
k−4. Similarly,

B21 := (∂ξg2/∂x(0))(t − s, Xg1(s, X
(0))),

(see (3.7)) vanishes for ξ(0) = ±e1, so after the substitution ξ(0) = ξp(η) we get
B21 = η1

|η| B̃21 with B̃21 = O(ε) in S0
k−5. Note that m1j = mj1 = 0, j = 1, 2, 3,

so the first component of ξ plays no role in (3.12). Therefore, the expression in
the parentheses in (3.12) can be rewritten as

∂m

∂xj
ξ · ξ − 2(B21mξ)j +

3∑
i=1

(B22)ji
∂m

∂xi
ξ · ξ

=
η2
1

η2
1 + (p3η2 − p2η3)2

(
p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

+
3∑

α,β=2

C
(j)
αβ mαβ +

3∑
i=1

3∑
α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
,

(3.15)

where C
(j)
αβ = O(ε), E

(j)
αβi = O(ε) in S0

k−5 for η ∈ suppχp. Therefore, in (3.12)
we can cancel out the factor η2

1/(η2
1 + (p3η2 − p2η3)2) to get

χp(η)
∫

e−iϕp(x,η)

(
p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

+
3∑

α,β=2

C
(j)
αβ mαβ +

3∑
i=1

3∑
α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
J−1

1 dx = 0, ∀η �= 0.

(3.16)

Relations (3.13) and the estimates we have on C
(j)
αβ , E

(j)
αβi allows us to apply
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Proposition 4.1 in [S-U2] to get

χp(η)
∫

e−iϕp(x,η)

(
3∑

α,β=2

C
(j)
αβ mαβ

+
3∑

i=1

3∑
α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
J−1

1 dx = O(ε‖∇m‖) in L2(R3
η),

provided that k−5 = 7. Here ‖∇m‖2 :=
∑3

i=1 ‖∂m/∂xi‖2
L2 and we have used the

Poincaré inequality ‖m‖ = ‖m‖L2(Bρ) ≤ C‖∇m‖ to estimate the term involving
C

(j)
αβ mαβ . Hence,

χp(η)
∫

e−iϕp(x,η)

(
p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

)
J−1

1 dx

= O(ε‖∇m‖) in L2(R3
η).

(3.17)

Let us multiply (3.17) by exp{iϕp(y, η)} and integrate in η. Since by [S-U2],
Proposition 4.1, this is a continuous operation from L2 into L2(Bρ), we obtain

∫ ∫
ei(ϕp(y,η)−ϕp(x,η))χp(η)

(
p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj

− 2p2p3
∂m23

∂xj

)
J−1

1 dx dη = O(ε‖∇m‖)
(3.18)

in L2((Bρ)y), j = 1, 2, 3. Next, as in [S-U2], introduce the function θ(x, y, η) by

θ(x, y, η) =
∫ 1

0

(∇xϕp)(x + t(y − x), η) dt.(3.19)

With this choice of θ,

ϕp(y, η) − ϕp(x, η) = (y − x) · θ(x, y, η).

The function θ is homogeneous of order 1 in η ∈ suppχp and for such η we have
θ = η + O(ε) in S1

k−4. The equation θ = θ(x, y, η) can be solved for η for ε
small enough and η ∈ suppχp, (x, y) ∈ Bρ. The solution η = η(x, y, θ) satisfies
η = θ+O(ε) in S1

k−4 for θ away from some conic neighborhood of the line θ = sp,
s ∈ R. Next, for the Jacobian J2 := det(dθ/dη) we have J2 = 1 + O(ε) in S0

k−5.
After the change η �→ θ in (3.18) we get∫ ∫

ei(y−x)·θχp(η(x, y, θ))Mp(x)J−1
1 J−1

2 dx dθ

= O(ε‖∇m‖) in L2(Bρ),
(3.20)
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j = 1, 2, 3, where

Mp := p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj
.

Here ξ = ξ(x, ξp(η(θ))) = ξp(θ) + O(ε) in S1
k−4 for θ away for a small (with ε)

conic neighborhood of the line θ = sp, s ∈ R. Next, J−1
1 J−1

2 = 1 + O(ε) in S0
k−5

for such θ. Let a(x) be a smooth cut-off function supported in Bρ such that
a = 1 on suppm. Then we can rewrite (3.20) as∫ ∫

ei(y−x)·θa(y)χ(η(x, y, θ))a(x)Mp(x)J−1
1 J−1

2 dx dθ

= O(ε‖∇m‖),
(3.21)

j = 1, 2, 3. For the amplitude in this oscillating integral we have

a(y)χp(η(x, y, θ))a(x)J−1
1 J−1

2 = a(y)χp(θ)a(x) + O(ε) in S0
k−5.

Moreover, for ε > 0 sufficiently small, supp θη(x, y, θ) is away from the singular
line θ = sp for (x, y) ∈ B2

ρ . According to Theorem A.1 in [S-U1], if k − 5 =
7, this is enough to conclude that we can replace the amplitude in (3.21) by
a(y)χp(θ)a(x) and this will result in a remainder term O(ε‖∇m‖), i.e.,

a(y)
∫ ∫

ei(y−x)·θχp(θ)Mp(x) dx dθ = O(ε‖∇m‖) in L2(R3
y),(3.22)

j = 1, 2, 3. Multiply (3.22) by Mp(y) and integrate in y to get (M̂p, χpM̂p) =
O(ε‖∇m‖2). This yields

θ
(
p2
2m̂33(θ) + p2

3m̂22(θ) − 2p2p3m̂23(θ)
)

= O(
√

ε‖∇m‖)
in L2

({
1 − |p·θ|

|θ| > δ
})

,
(3.23)

(compare with (2.17)). Recall that δ > 0 was a small parameter.
Choose first p = (0, p2, p3) = (0, 1, 0). Then

θm̂33(θ) = O(
√

ε‖∇m‖) in L2
({

|θ2|
|θ| < 1 − δ

})
.(3.24)

Next, setting p = (0, 0, 1) yields

θm̂22(θ) = O(
√

ε‖∇m‖) in L2
({

|θ3|
|θ| < 1 − δ

})
.(3.25)

Let us now set p = (0, 1, 2)/
√

5 and next p = (0, 2, 1)
√

5. We get

θ
(
m̂33(θ) + 4m̂22(θ) − 4m̂23(θ)

)
=O(

√
ε‖∇m‖)

in L2
({

|θ2+2θ3|√
5|θ| < 1 − δ

})
,

(3.26)
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θ
(
4m̂33(θ) + m̂22(θ) − 4m̂23(θ)

)
=O(

√
ε‖∇m‖)

in L2
({

|2θ2+θ3|√
5|θ| < 1 − δ

})
.

(3.27)

We will prove now that (3.24) holds in the whole L2. Indeed, for |θ2|/|θ| > 1− δ
we can use (3.25), (3.26) and (3.27) together provided that δ > 0 is sufficiently
small to get θm̂33 = O(‖∇m‖) for such θ. Therefore,

θm̂33(θ) = O(
√

ε‖∇m‖) in L2(R3
θ).(3.28)

In the same way we get

θm̂22(θ) = O(
√

ε‖∇m‖) in L2(R3
θ).(3.29)

Now, (3.26) and (3.27) combined yield

θm̂23(θ) = O(
√

ε‖∇m‖) in L2(R3
θ).(3.30)

Consequently, by (3.28), (3.29) and (3.30)

θm̂(θ) = O(
√

ε‖∇m‖) in L2(R3
θ),

thus
‖∇m‖ ≤ C

√
ε‖∇m‖

with C independent of ε, m provided that ε is small enough. Therefore, choosing
ε < 1/C2, we get m = 0 and Theorem 1.1 is proved.
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France 122 (1994), 435–442.



96 PLAMEN STEFANOV AND GUNTHER UHLMANN

[Mu] R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian
metric, and integral geometry, (Russian), Dokl. Akad. Nauk SSSR 232 (1977), 32–35.

[Mu-R] R. G. Mukhometov and V. G. Romanov, On the problem of finding an isotropic
Riemannian metric in an n-dimensional space, (Russian), Dokl. Akad. Nauk SSSR
243 (1978), 41–44.
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